
Current Topics in Informatics (2 lectures on Model Checking)

(bachelor course KMI/AKTI)

Petr Jančar

December 8, 2022

(Draft of the notes for the two lectures.)

We started with recalling the undecidability of general verification problems (for software
and hardware systems); in particular we recalled the halting problem and Rice’s theorem.
Such problems are decidable for finite-state systems but even in this case there is the so-called
state-explosion problem already for simple parallel system (consisting of a small number of
communicating components), which can easily lead to a large computational complexity of
the verified problems.

For concreteness we then recalled Peterson’s algorithm for solving the critical section prob-
lem, and illustrated that already simple problems in distributed computing can lead to
solutions with subtle mistakes. Nevertheless, here it is possible (and feasible) to perform
automated analysis that leads either to verifying the desired properties (of the suggested
solution-protocol) or to presenting some counterexample(s).

To give a concrete idea of a possible formalization, we first recalled a variant of systems
related to the notions of Kripke structures and/or labelled transition systems. By a labelled
system, or just a system for short, we will here mean a structure

L = (S,ap, `,→)

where

• S is the set of (global) states (typically finite, though they might be also infinite);

• ap is a finite set of atomic propositions (for expressing some relevant facts about states);

• ` is the labelling function ` : S → 2ap (attaching valid propositions to each state);

• and → ⊆ S × S is the one-step relation, for which we rather write s → s′ instead
of (s, s′) ∈ → (meaning that the system can go from the state s to the state s′ by
performing an “instruction”).

We want to design a language, typically a set of formulas of a logic, expressing (some
relevant) properties, so that for a system L = (S,ap, `,→), a state s ∈ S, and a formula ϕ
we give a precise meaning to the expression

L, s |= ϕ, or just s |= ϕ when L is clear from context,

1

which should capture that the state s has the property expressed by the formula ϕ.

The expressed properties are typically a sort of safety properties (something bad never
happens; e.g., two processes are never in their critical section simultaneously), a sort of
liveness properties (something good happens eventually; e.g., after a process asks to enter
the critical section, it will eventually enter), or a (maybe complicated) combination of such
properties.

One logic (set of formulas with their semantics) that plays an important role in verification
is the so-called µ-calculus; we now describe one of its versions. Here the formulas are mainly
thought as denoting the sets of states: [[ϕ]] ⊆ S, hence s |= ϕ iff s ∈ [[ϕ]].

It is technically useful to have also formulas with free variables X,Y, Z,X1, Y1, . . . , from a
set Var, that are evaluated to sets of states. Formulas, denoted by ϕ, ϕ′, ϕ1, . . . , are defined
by the following inductive definition, where p ∈ ap and X ∈ Var:

ϕ ::= p | X | ¬ϕ′ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | 〈−〉ϕ′ | [−]ϕ′ | µX.ϕ′ | νX.ϕ′

where µ stands for “the least fixpoint” and in µX.ϕ′ it binds the free occurrences of X in ϕ′,
while ν stands for “the greatest fixpoint” and in νX.ϕ′ it also binds the free occurrences of X
in ϕ′. In fact, there is also a syntactic monotonicity constraint: in formulas µX.ϕ′ and νX.ϕ′

we require that X is in the scope of an even number of negations.

Given L = (S,ap, `,→), and a valuation v : Var→ 2S , we define the denotation

[[ϕ]]L,v ⊆ S

by the following structural induction:

• [[p]]L,v = {s ∈ S | p ∈ `(s)};

• [[X]]L,v = v(X);

• [[¬ϕ]]L,v = S r [[ϕ]]L,v;

• [[ϕ1 ∧ ϕ2]]L,v = [[ϕ1]]L,v ∩ [[ϕ2]]L,v;

• [[ϕ1 ∨ ϕ2]]L,v = [[ϕ1]]L,v ∪ [[ϕ2]]L,v;

• [[〈−〉ϕ]]L,v = {s ∈ S | ∃s′ ∈ S : (s→ s′ and s′ ∈ [[ϕ]]L,v)};

• [[[−]ϕ]]L,v = {s ∈ S | ∀s′ ∈ S : (s→ s′ ⇒ s′ ∈ [[ϕ]]L,v)};

• [[µX.ϕ]]L,v is the least fixpoint of the functional τ : 2S → 2S where for A ⊆ S we have
τ(A) = [[ϕ]]L,v[X←A];

• [[νX.ϕ]]L,v is the greatest fixpoint of the above functional τ .

We add that by the valuation v[X ← A] we denote the valuation v′ : Var → 2S such that
v′(X) = A and v′(Y) = v(Y) for all Y 6= X.

Due to the above monotonicity constraint, the functional τ : 2S → 2S is monotonic in the
sense that A ⊆ B implies τ(A) ⊆ τ(B). Such a functional has the least fixpoint lfpτ and
the greatest fixpoint gfpτ (w.r.t. set inclusion) by the well-known results (Tarski). (We thus
have lfpτ = τ(lfpτ), gfpτ = τ(gfpτ), and for every C ⊆ S where C = τ(C) we have
lfpτ ⊆ C ⊆ gfpτ .) Concretely, we have

2

lfpτ =
⋂
{X ⊆ S | X ⊇ τ(X)} and gfpτ =

⋃
{X ⊆ S | X ⊆ τ(X)}.

If S is finite, then lfpτ is the stable set in the sequence ∅ ⊆ τ(∅) ⊆ τ(τ(∅)) ⊆ · · · , and gfpτ
is the stable set in the sequence S ⊇ τ(S) ⊇ τ(τ(S)) ⊇ · · · .

Example of ϕ expressing that there is a computation going via a state where crit1 ∧ crit2:

µX. ((crit1 ∧ crit2) ∨ 〈−〉X).

Hence [[ϕ]] contains all states from which there is a computation visiting a state in
which (crit1 ∧ crit2) is true (processes 1 and 2 are in the critical section at the
same time). The negation ¬µX. ((crit1 ∧ crit2) ∨ 〈−〉X) is equivalent to the formula
νX. ((¬crit1 ∨ ¬crit2) ∧ [−]X).

Generally we have that ¬µX.ϕ(X) is equivalent to νX.¬ϕ(¬X/X).

(To a monotonic functional τ : 2S → 2S we can attach the functional τ ′ : 2S → 2S

where τ ′(A) = τ(A); by B we denote S rB. We note that A ⊆ B entails A ⊇ B,

hence τ(A) ⊇ τ(B), and thus τ(A) ⊆ τ(B); τ ′ is thus monotonic as well. We
observe that τ ′(A) = A iff τ(A) = A; hence lfpτ = gfpτ ′ .)

We considered the computational problem MCMC (model checking µ-calculus):

Instance: L = (S,ap, `,→), and a closed formula ϕ (of the above µ-calculus).

Output: the set [[ϕ]]L.

We have sketched the idea of a polynomial reduction of MCMC to the problem of parity
games, denoted PG. We describe one possible version of such games.

An instance of PG is a directed graph G = (V,E), also called a game arena, or just a game,
where the set V of vertices is a finite subset of N = {0, 1, 2, . . . }, and E ⊆ V × V satisfies
E(v) 6= ∅ for all v ∈ V . (We use the notation E(v) = {v′ | (v, v′) ∈ E}.) For technical
convenience we also consider the empty game where V = ∅.

A play from v ∈ V is a finite, or infinite, path starting in v, i.e., a sequence π =
v0, v1, v2, . . . , vk (k ∈ N where N = {0, 1, 2, . . . }), or π = v0, v1, v2, . . . , where v0 = v and
vi ∈ E(vi−1) for all i ∈ [1, k], or for all i ≥ 1. (By [i, j] we denote the set {i, i+1, i+2, . . . , j}.)

We imagine two players, an even player P0 (who chooses next moves in even vertices), and
an odd player P1 (who chooses in odd vertices). A (partial) P0-strategy from v is a nonempty
(finite or infinite) prefix-closed set S of plays from v (if π ∈ S and π′ is a nonempty prefix of
π, then π′ ∈ S) such that for each finite play v0, v1, . . . , v` in S the following holds:

• if v` is even, then there is at most one play v0, v1, . . . , v`, v in S (for v ∈ E(v`)), and

• if v` is odd, then either there is no play v0, v1, . . . , v`, v in S or S contains the plays
v0, v1, . . . , v`, v for all v ∈ E(v`).

A play π ∈ S that is not a proper prefix of another π′ ∈ S (hence π is maximal in S) is
called a branch of S (it can be finite or infinite). A (partial) P1-strategy from v is defined
symmetrically: if v` is odd, then there is at most one v0, v1, . . . , v`, v in S, and if v` is even,
then either there is no play v0, v1, . . . , v`, v in S or S contains v0, v1, . . . , v`, v for all v ∈ E(v`).
A (P0- or P1-) strategy S from v is complete if each branch of S is infinite.

3

An infinite play π (from some v) is a P0-win if the least vertex occurring in π infinitely
often is even; if this vertex is odd, then π is a P1-win. A complete P0-strategy S from v is
winning if each branch of S is a P0-win. A complete P1-strategy S from v is winning if each
branch of S is a P1-win. For i ∈ {0, 1} we put

Wini(G) = {v ∈ V | there is a winning Pi-strategy from v}.

It is standard to derive that Win0(G) ∩Win1(G) = ∅ and Win0(G) ∪Win1(G) = V .

We finish a description of the problem PG:

Instance: G = (V,E);

Output : Win0(G) (and Win1(G) = V rWin0(G)).

We recall that it is natural to require that an algorithm solving PG returns not only
Win0(G) and Win1(G) but also the respective winning P0- and P1-strategies (for all ver-
tices). It is well known that these strategies can be given compactly since they can be chosen
as history-free (a.k.a. positional, or memoryless), where the continuation of v0, v1, . . . , v` is
determined solely by v`.

We have shown a proof of the fact that the optimal strategies can be chosen among the
positional strategies.

The credit task for students:

Based on this fact, show that the following decision problem PGdec

Instance: G = (V,E) and v ∈ V ;

Question: is v in Win0(G)?

is in NP∩ co-NP.

Remark. The possible polynomiality of the problem (i.e., its membership in PTIME) is a
well-known open problem, now for more than three decades ...

4

