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NFA UNIVERSALITY

For NFA A,is L(A) = £*?

PSPACE-complete (Meyer, Stockmeyer, 1972)
¢ reducible to equivalence, inclusion

PTIME for DFAs

SETH implies that for any e > 0 universality of n-state NFA can’t be decided in time O*(2n/(2+€)),

What was known (Fernau, Krebs 2017):

ETH implies that universality of n-state NFA can’t be decided in time O*(2°(™)),
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Exponential time hypothesis
There is some € > 0 such that 3-SAT cannot be solved in time O*(2¢™).

Strong exponential time hypothesis
For every € > 0, there is some k > 3 such that k-SAT cannot be solved in time O*(2(1—€)n),
where 1 is the number of variables.
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PROOF

Given a k-CNF formula ¢ with n variable and m clauses we construct in poly(n) time an NFA
A with N = 2n 4 2 states such that

@ is satisfiable  iff A is universal.

Solving universality in time 0*(2N/(2+¢€)) then implies solving k-SAT in time O*(Z(]*“:/)“) for
e’ = €¢/(2+ €). This contradicts SETH.
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Construction idea:

® given a special input word, A, tries all variable assignments. If no satisfying assignment is
found, A, switches to configuration consisting of one nonaccepting state.

® otherwise, A, keeps an accepting state in its configuration at all times.

Our special words are derived from Zimin words:
e Zimin word over alphabet {a1, az, ..., an}is
VARES ar,
Zi =7Zi 1a:Zi1 (fori > 1)
° |Zi|=2"—1
e Key property

index of j-th symbol gives the position (counted from the end) of the rightmost O in a binary
expansion of j — 1
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Let clauses of @ be € ={Cy,C2,...,Cn}

For a literal Llet cl(1) = {C | Cis a clause containing l}.

The alphabet = of A, is{aj, az,...,an,ans1} x C.

ag . a;xC
In the automata constructed so far, we replace — with ——.

s b b
We add states qa, qr and transitions qa — qa, qr — qr-
Initial states: I = {x9,...,x%, qr}, the only nonaccepting state is qr.

(Once we have qq in a configuration, it stays there for the rest of the run, so the run is accepting.)

We add transitions to qa from valid literals under clauses they satisfy

o {ar,anpiixcl(=x;)
X{ da,

1 {aranhxcl(xy)
Xi qa.
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Assume ¢ is satisfiable and w € " is an arbitrary word (e € L(A)).
Letu =1uy ... be the longest prefix of w that is a "zimin word”.

Let 1 be the minimal number whose binary representation corresponds to an assignment that
satisfies @.

If Ju| > 1then I 222225 Y| the set Y contains an accepting state (x{ji for all 1). Moreover, by the
previous slide, for any symbol z € £ we have Y = Y’ and Y’ contains q.

If lu| < 1thenw =u (as, C) v for some word v € *.
This entails [u| < 2™ — 1 and the configuration after reading u represents [u| in binary.

Let at # as be the correct first component in a "zimin word”after u.
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