Fine-grained complexity of NFA universality.

Petr Osička

Jiří Balun, Tomáš Masopust, Petr Osička

Speed Me up If You Can: Conditional Lower Bounds on Opacity Verification.

MFCS 2023: 16:1-16:15

NFA UNIVERSALITY

- For NFA A, is $L(A) = \Sigma^*$?
- PSPACE-complete (Meyer, Stockmeyer, 1972)
- reducible to equivalence, inclusion
- PTIME for DFAs

Theorem

SETH implies that for any $\varepsilon>0$ universality of n-state NFA can't be decided in time $O^*(2^{n/(2+\varepsilon)})$.

What was known (Fernau, Krebs 2017):

Theorem

ETH implies that universality of n-state NFA can't be decided in time $O^*(2^{o(n)})$.

Exponential time hypothesis

There is some $\epsilon > 0$ such that 3-SAT cannot be solved in time $O^*(2^{\epsilon n})$.

Strong exponential time hypothesis

For every $\epsilon > 0$, there is some $k \ge 3$ such that k-SAT cannot be solved in time $O^*(2^{(1-\epsilon)n})$, where n is the number of variables.

PROOF

Given a k-CNF formula ϕ with n variable and m clauses we construct in poly(n) time an NFA A_{ϕ} with N=2n+2 states such that

 ϕ is satisfiable iff A_{ϕ} is universal.

Solving universality in time $O^*(2^{N/(2+\varepsilon)})$ then implies solving k-SAT in time $O^*(2^{(1-\varepsilon')n})$ for $\varepsilon'=\varepsilon/(2+\varepsilon)$. This contradicts SETH.

Construction idea:

- given a special input word, A_{φ} tries all variable assignments. If no satisfying assignment is found, A_{φ} switches to configuration consisting of one nonaccepting state.
- otherwise, A_{ω} keeps an accepting state in its configuration at all times.

Our special words are derived from Zimin words:

• Zimin word over alphabet $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is

$$\begin{split} Z_1 &= \alpha_1, \\ Z_i &= Z_{i-1} \alpha_i Z_{i-1} \text{ (for } i > 1) \end{split}$$

- $|Z_i| = 2^i 1$
- Key property index of j-th symbol gives the position (counted from the end) of the rightmost 0 in a binary expansion of j-1

 4	3	2	ſ	
0	0	0	0	مم
0	0	0	ī	az
0	D	ī	0	Q. 4
0	0	1	T	Q3
0	ı	0	D	a
0	J	0	T	Q.
D	ı	T	0	01
0	J	١	T	

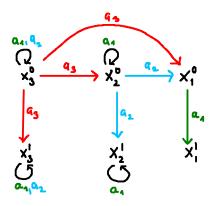
Symbolic incrementation algorithm

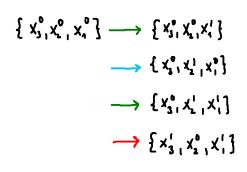
1. Find rightmost 0

2. switch it to 1

3. All 1 to the right switch to 0

Zimin word gives us this





Let clauses of ϕ be $\mathfrak{C} = \{C_1, C_2, \dots, C_m\}$.

For a literal l let $cl(l) = \{C \mid C \text{ is a clause containing } l\}$.

The alphabet Σ of A_{ϕ} is $\{\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_{n+1}\} \times \mathcal{C}$.

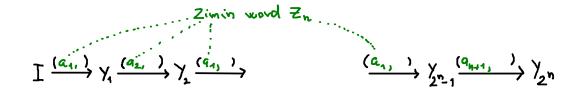
In the automata constructed so far, we replace $\xrightarrow{\alpha_i}$ with $\xrightarrow{\alpha_i \times \mathcal{C}}$.

We add states q_a , q_r and transitions $q_a \xrightarrow{\Sigma} q_a$, $q_r \xrightarrow{\Sigma} q_r$. Initial states: $I = \{x_1^0, \dots, x_n^0, q_r\}$, the only nonaccepting state is q_r .

(Once we have $q_{\it a}$ in a configuration, it stays there for the rest of the run, so the run is accepting.)

We add transitions to $q_{\mbox{\scriptsize a}}$ from valid literals under clauses they satisfy

$$\begin{split} & x_i^0 \xrightarrow{\{\alpha_1, \dots, \alpha_{n+1}\} \times \text{Cl}(\neg x_i)} q_a, \\ & x_i^1 \xrightarrow{\{\alpha_1, \dots, \alpha_{n+1}\} \times \text{Cl}(x_i)} q_a. \end{split}$$



if y satisfies C then gaey!

if y does not satisfy cand gaky then gaky

- → if y satisfies 'P, then any choice of C ensures that que y'
- → if y does not satisfy & and 9a ∈ Y, then there is a closure c st 9a & Y!.

Among "Zimin words":

there is a run st. $Y_2n = \{q_r\}$ iff

y is not satisfiable

Assume φ is satisfiable and $w \in \Sigma^+$ is an arbitrary word ($\epsilon \in L(A_{\varphi})$).

Let $u = u_1 \dots$ be the longest prefix of w that is a "zimin word".

Let 1 be the minimal number whose binary representation corresponds to an assignment that satisfies φ .

If $|u|\geqslant l$ then $I\xrightarrow{u_1,\dots,u_l}Y$, the set Y contains an accepting state $(x_i^{b_i})$ for all i). Moreover, by the previous slide, for any symbol $z\in \Sigma$ we have $Y\xrightarrow{z}Y'$ and Y' contains q_α .

If $|\mathfrak{u}| < \mathfrak{l}$ then $w = \mathfrak{u} \; (\mathfrak{a}_s, C) \; v$ for some word $v \in \Sigma^*$.

This entails $|u| < 2^n - 1$ and the configuration after reading u represents |u| in binary.

Let $a_t \neq a_s$ be the correct first component in a "zimin word" after u.

$$I \xrightarrow{u} \{x_{h_1}^{b_1} \dots, x_{h_1}^{b_1}\} \cup \{q_{l_1}\} : (b_{h_1, \dots, b_{h_1}})_2 = |u|$$

$$key property of zimin words \Rightarrow (\dots b_{l_1} b_{l_2} \dots b_{l_n})$$

$$the config is \{\dots, x_{l_1}^0, x_{l_{l-1}}^1, \dots, x_{l_1}^1\} \cup \{q_{l_1}\}$$

$$\frac{|f| \leq t}{x_s^4} \qquad \frac{|f| \leq t}{x_{l_1}^4}$$

{as] x C

This can be added to Ap without disrupting the "Zimin" runs.

